

RM33 & 52 RH & Temperature Transmitter, HVAC Room Monitor User's Manual

RM33 & 52

© 2011 Michell Instruments

This document is the property of Michell Instruments Ltd. and may not be copied or otherwise reproduced, communicated in any way to third parties, nor stored in any Data Processing System without the express written authorization of Michell Instruments Ltd.

Contents

Electrical Saf Toxic Materia Repair and M Calibration Safety Confo EMC Compat Abbreviations Warnings Recycling Policy WEEE And RoHS C	Verty v Als v Maintenance v rmity v ribility v vi vi Compliance vii es vii
Manufacturing Qua Warranty	alityviii
1.1 Highli 1.2 Featu 1.3 Dime	ION 1 ights 1 ires 1 nsions 2 CONNECTIONS 4
3.1 Calibr	N AND ADJUSTMENT PROCEDURE
Figures	
Figure 1.1 Figure 1.2 Figure 1.3	RM33 & 52 1 Dimensions 2 Template for Mounting 3
Figure 2.1	Electrical Connections4
Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4	RM33 - 2-wire Connection
Appendices	Technical Specifications
Appendix A	Tarring at Specifications
Appendix B	Recommended Practices in Humidity Measurements

Safety

The manufacturer has designed this equipment to be safe when operated using the procedures detailed in this manual. The user must not use this equipment for any other purpose than that stated. Do not apply values greater than the maximum value stated.

This manual contains operating and safety instructions, which must be followed to ensure the safe operation and to maintain the equipment in a safe condition. The safety instructions are either warnings or cautions issued to protect the user and the equipment from injury or damage. Use competent personnel using good engineering practice for all procedures in this Manual.

Electrical Safety

The instruments are designed to be completely safe when used with options and accessories supplied by the manufacturer for use with the instrument.

Toxic Materials

The use of hazardous materials in the construction of this instrument has been minimized. During normal operation it is not possible for the user to come into contact with any hazardous substance which might be employed in the construction of the instrument. Care should, however, be exercised during maintenance and the disposal of certain parts.

Repair and Maintenance

The instruments must be maintained either by the manufacturer or an accredited service agent. Refer to Appendix C for Michell Instruments' worldwide offices contact information.

Calibration

Michell Instruments recommends an annual calibration for an accuracy requirement of $\pm 2\%$ RH under ambient conditions where temperature is 0 to $+50^{\circ}$ C (+32 to $+122^{\circ}$ F) and relative humidity is 0 to 70% RH. For environments with airborne chemicals or for high humidity and high temperature conditions, Michell recommends more frequent calibration.

Safety Conformity

This product meets the essential protection requirements of the relevant EU directives. Further details of applied standards may be found in the product specification.

EMC Compatibility

The RM33 & 52 relative humidity and temperature transmitters are designed to meet the following European standards:

- EN 61326 (1997) + A1 (1998) + A2 (2001)
- EN 61000-3-2 (1995) +A1 (1998) + A2 (1998) & EN 61000-3-3 (1995)
- Emission: Class B, Immunity: Industrial

Abbreviations

The following abbreviations are used in this Manual:

°C degrees Celsius

°F degrees Fahrenheit

DC direct current

" inch(es)

mA milliampere

mm millimeters

% percentage

oz ounce(s)

RH relative humidity

T temperature

V Volts

 Ω Ohms

Warnings

The following general warning listed below is applicable to this instrument. It is repeated in the text in the appropriate locations.

Where this hazard warning symbol appears in the following sections it is used to indicate areas where potentially hazardous operations need to be carried out.

Recycling Policy

Michell Instruments is concerned with the protection of the environment. It is our commitment to reduce and eliminate from our operations, wherever possible, the use of substances which may be harmful to the environment. Similarly, we are increasingly using recyclable and/or recycled material in our business and products wherever it is practical to do so.

The product that you have purchased may contain recyclable and/or recycled parts and we will be happy to provide you with information on these components if required.

WEEE And RoHS Compliance

The Waste Electronic and Electrical Equipment (WEEE) Directive, and the Restriction of Hazardous Substances (RoHS) Directive place rules upon European manufacturers of electrical and electronic equipment. The directives' aim is to reduce the impact that electronic devices have on the environment.

Michell products are currently exempt from the RoHS directive, however all future products will be developed entirely using compliant materials. Furthermore, Michell is taking active steps to remove non-compliant materials and components from existing products wherever possible.

Michell is in full compliance with the WEEE Directive (Registration No. WEE/JB0235YW). Customers may be required to return certain instruments for treatment at the end of their working life.

June 2010

Calibration Facilities

Each unit has an internal reference which is calibrated against our working factory standard and is traceable to 'VSL' in The Netherlands and National Physical Laboratory (NPL) in the UK.

Calibration Certificates:

In addition to the normal calibration procedure, each internal reference transmitter can be supplied with its own VSL or NPL traceable calibration certificate.

Manufacturing Quality

Michell Instruments UK is registered with the British Standards Institute for Quality Assurance to:

BS EN ISO 9001: 2008

Rigorous procedures are performed at every stage of production to ensure that the materials of construction, manufacturing, calibration and final test procedures meet the requirements laid down by our BSI approved Quality System.

Please contact Michell Instruments if the product does not arrive in perfect working order.

Warranty

Unless otherwise agreed, the Supplier warrants that, as from the date of delivery for a period of 12 months the goods and all their component parts, where applicable, are free from any defects in design, workmanship, construction or materials.

The Supplier warrants that the services undertaken shall be performed using reasonable skill and care, and of a quality conforming to generally accepted industry standards and practices.

Except as expressly stated, all warranties, whether express or implied, by operation of law or otherwise, are hereby excluded in relation to the goods and services to be provided by the Supplier.

All warranty services are provided on a return to base basis. Any transportation costs for the return of a warranty claim shall reside with the Customer.

Return Policy

If a Michell Instruments' product malfunctions within the warranty period, the following procedure must be completed:

- 1. Notify a Michell Instruments' distributor, giving full details of the problem, the model variant and the serial number of the product.
- 2. If the nature of the problem indicates the need for factory service then the instrument should be returned to Michell Instruments, carriage prepaid, preferably in the original packaging, with a full description of the fault and the customer contact information.
- 3. Upon receipt, Michell Instruments will evaluate the product to determine the cause of the malfunction. Then, one of the following courses of action will be taken:
 - If the fault is covered under the terms of the warranty, the instrument will be repaired at no cost to the owner and returned.
 - If Michell Instruments determines that the fault is not covered under the terms of the warranty, or if the warranty has expired, an estimate for the cost of the repairs, at standard rates, will be provided. Upon receipt of the owner's approval to proceed, the product will be repaired and returned.

1 INTRODUCTION

The RM series of relative humidity and temperature transmitters offers a comprehensive range of output signals and measurement ranges. The transmitters are housed in a wall mounting enclosure making these instruments ideal for HVAC and building management applications.

Figure 1.1 RM33 & 52

1.1 Highlights

- Designed for low cost HVAC applications
- Quick installation electrical connection with screw terminals
- Long term stability

1.2 Features

- % RH and temperature outputs
- Elegant housing
- Temperature XMTR or Pt100/Pt1000 output
- Available with current or voltage output signals
- Long term stability: ±1% RH over 12 months

1.3 Dimensions

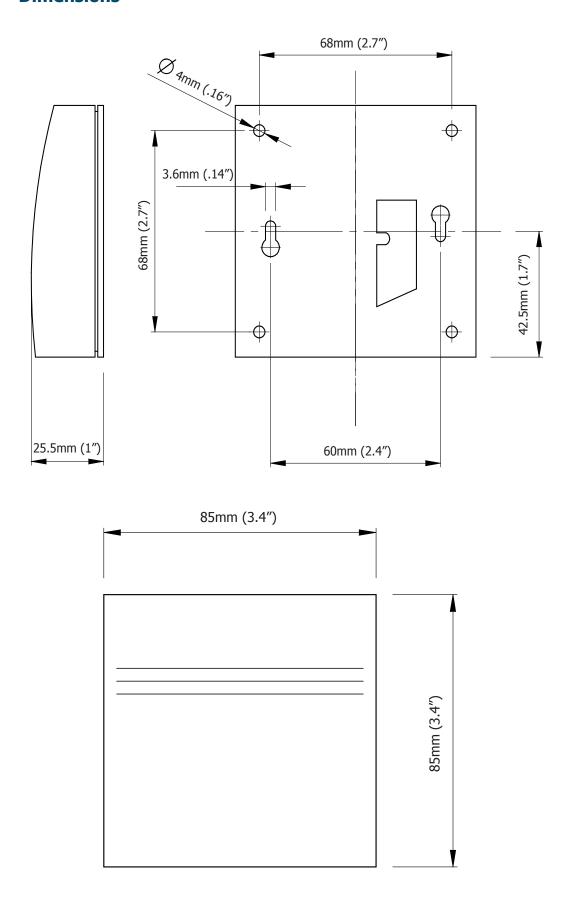
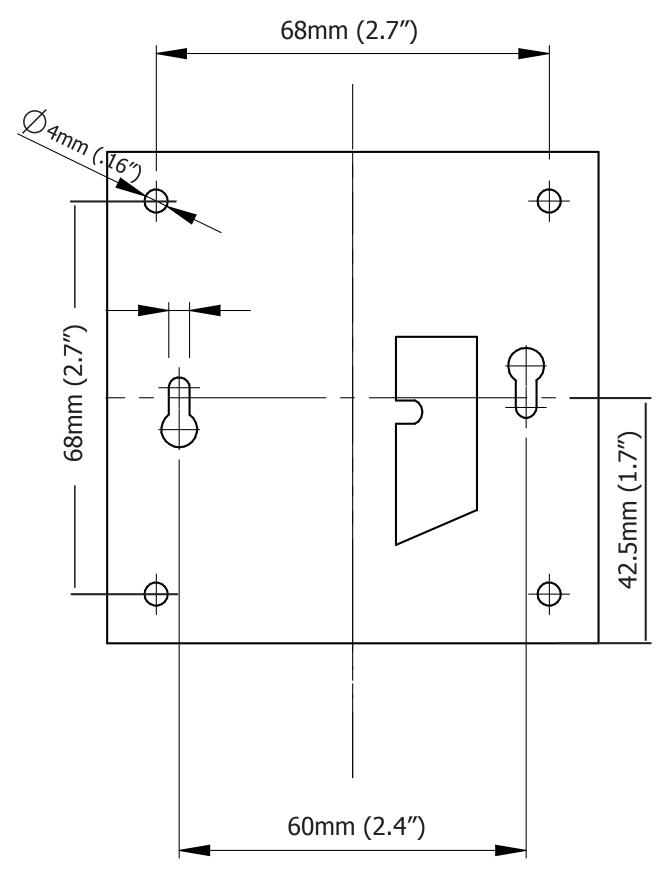



Figure 1.2 Dimensions

This drawing is actual size and can, therefore, be photocopied and used as a template when mounting the instrument.

Figure 1.3 Template for Mounting

2 ELECTRICAL CONNECTIONS

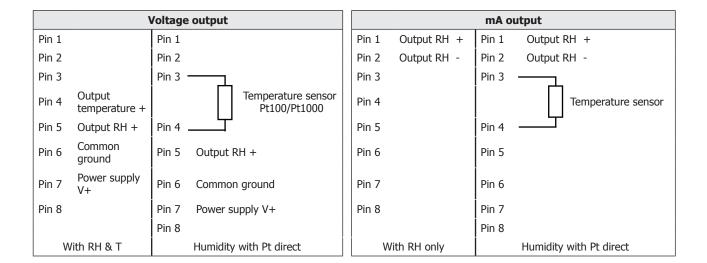


Figure 2.1 Electrical Connections

3 CALIBRATION AND ADJUSTMENT PROCEDURE

- **Calibration certifications**: In addition to the normal calibration procedure, each transmitter can be supplied with its own traceable calibration certificate. Please ask Michell Instruments or your local distributor for more information.
- **Calibration interval time:** Under normal ambient conditions (0 to 50°C, 0 to 70% RH) and for accuracy of ±2% RH, an annual calibration is recommended. For accuracy of ±5% RH, a calibration is recommended every five years. For environments with airborne chemicals or of high humidity and high temperature conditions more frequent calibration is recommended.

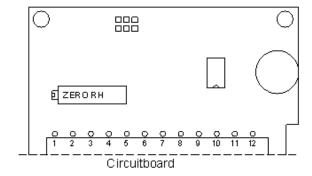
If re-adjustment is necessary, refer to Sections 3.1 and 3.2 and also see the drawings of the circuit boards for the location of the potentiometers (*Figures 3.1 and 3.2*).

A humidity generator, (Michell Instruments S503, S904 or Optical), used in combination with a general reference handheld hygrometer, is ideal for a quick and accurate calibration. For more information on the S503, S904 or Optical humidity generators please contact Michell Instruments (see contact details in Appendix C).

3.1 Calibration & adjustment for 3% accuracy (1pt adjustment)

RM33

- 1. Open the casing by inserting a small screwdriver to release the catch.
- 2. Unscrew and remove the circuit board from the box.



DO NOT TOUCH THE SENSOR ELEMENT

- The transmitter should be calibrated at one point, for example 50% RH.
- Once this value is reached and the reading of the reference has stabilized, adjust the transmitter with the RH potentiometer.
- For versions with a T output the temperature should be calibrated at ambient temperature.
- After stabilizing, adjust with the temperature potentiometer.

See Figure 3.1 for 2-wire V DC power supply voltage, output 4-20 mA and Figure 3.2 for 3/4-wire V DC power supply voltage, output 0-1, 0-5 or 0-10 V.

2-wire (mA)

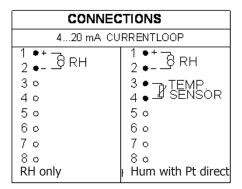
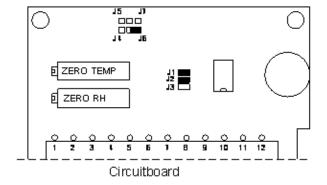



Figure 3.1 RM33 - 2-wire Connection

3/4-wire (Volt)

CONNECTIONS					
VOLTAGE OUTPUT					
10	1 0				
2 0	2 0				
3 0	3 • TEMP. 14 • SENSOR				
4 ◆ TEMP. OUT	4 • ≟ SENSOR				
5 • %RH OUT	5 ● %RH OUT				
6 ◆ GND	6 • GND				
7 • V+	7 • V+				
80	8 0				
Hum. with temp	Pt direct				

REL HUMIDITY OUTPUT						
	J1	J2	J3			
0 - 1 V DC	•					
0 - 5 V DC			•			
0 - 10 V DC	•	•				

Soldered joint

TEMPERATURE RANGE / OUTPUT												
			+50°(+122				-100º +212				+80° +176°	
Output	J4	J5	J6	J7	J4	J5	J6	J7	J4	J5	J6	J7
0 - 1 V DC						•			•	•		
0 - 5 V DC		•	•					•	•			•
0 - 10 V DC			•			•	•		•	•	•	

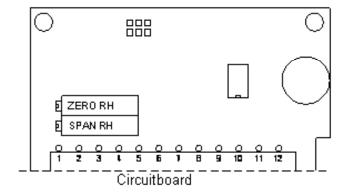
Soldered joint

Figure 3.2 RM33 - 3/4-wire Connection

3.2 Calibration & adjustment for 2% accuracy (2 pt adjustment)

RM52

- 1. Open the casing by inserting a small screwdriver to release the catch.
- 2. Unscrew and remove the circuit board from the box.



DO NOT TOUCH THE SENSOR ELEMENT

- The transmitter should be calibrated at two points, one low (Zero) and one high (Span) point.
- Once the first low value is reached and the reading of the reference is stabilized, adjust the transmitter with the Zero RH potentiometer. Compare with the reference.
- After the second high value is reached and stabilized, adjust with the Span RH potentiometer.
- For versions with a T output this procedure should be repeated with a temperature potentiometer - only use the "Zero temp" potentiometer to adjust the temperature readings.

See Figure 3.3 for 2-wire V DC power supply, output 4-20 mA and Figure 3.4 for 3/4-wire V DC power supply voltage, output 0-1, 0-5 or 0-10 V.

2-wire (mA)

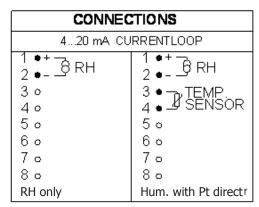
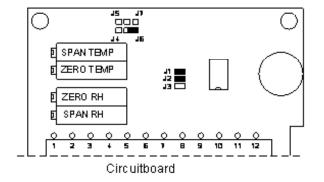



Figure 3.3 RM52 - 2-wire Connection

3/4-wire (Volt)

CONNECTIONS							
VOLTAGE	VOLTAGE OUTPUT						
10	1 0						
2 0	2 0						
3 0	3 • TEMP. 4 • BENSOR						
4 ● TEMP. OUT	4 ● ≟ SENSOR						
5 • %RH OUT	5 • %RH OUT						
6 ◆ GND	6 ◆ GND						
7 ◆ V+	7 ◆ V+						
80	8 0						
RH & T	Hum. with Pt direct						

REL HUMIDITY OUTPUT							
	J1	J2	J3				
0 - 1 V DC	•						
0 - 5 V DC			•				
0 - 10 V DC	•	•					

Soldered joint

Temperature Range / Output												
	0 - +50°C (+32 to +122°F)		0 - +100°C (+32 to +212°F)			-20 to +80°C (-4 to +176°F)						
Output	J4	J5	J6	J7	J4	J5	J6	J7	J4	J5	J6	J7
0 - 1 V DC						•			•	•		
0 - 5 V DC		•	•					•	•			•
0 - 10 V DC			•			•	•		•	•	•	

Soldered joint

Figure 3.4 RM52 - 3/4-wire Connection

Appendix A

Technical Specifications

Appendix A Technical Specifications

Performance						
Measurement range (RH)	0–100% RH					
Measurement range (T)	0 to +50°C (+32 to +122°F)					
Accuracy at 23°C (73°F) Humidity	RM52: <±2% RH (10–90% RH) RM33: <±3% RH (30–80% RH)					
Accuracy at 23°C (73°F) Temperature	RM52: ±0.2°C (±0.36°F) RM33: ±0.3°C (±0.54°F)					
Temperature influence	±0.05% RH/°C (±0.027% RH/°F)					
Stability – RH Sensor	±1% RH/year					
Response time – RH Sensor	<10 sec typical (for 90% of the step change)					
Electrical output/input						
Output signal	4–20 mA (2-wire), 0–1, 0–5, 0–10 V					
Supply voltage	14–35 V DC (for 0–5/10 V) 4.5–35 V DC (for 0–1 V) and 14–26 V AC					
Supply voltage influence	±0.01% RH/V typical					
Operating conditions						
Operating humidity Housing, Storage	10-90% RH					
Operating temperature Electronics Storage	0 to +50°C (+32 to +122°F) -40 to +75°C (-40 to +167°F)					
PRT						
Measurement range	Pt100/1000: -50 to +200°C (-58 to +392°F)					
Accuracy	Pt100/1000: ±0.15%					
Mechanical specification						
Ingress protection	N/A					
Housing material	White molded polymer housing					
Dimensions	91 x 91 x 25.5mm (3.58 x 3.58 x 1.00")					
Weight	85g (3oz)					
Electrical connections	Screw terminals					

Appendix B

Recommended Practices in Humidity Measurements

Appendix B Recommended Practices in Humidity Measurements

The following text is reproduced with kind permission from the National Physical Laboratory. It is originally published in the booklet, *A Guide to the Measurement of Humidity.*

DEFINITION OF RELATIVE HUMIDITY

Relative Humidity – The ratio of the actual vapor pressure to the saturation vapor pressure over a plane liquid water surface at the same temperature, expressed as a percentage. This is commonly understood when the term 'X percent relative humidity' is used.

For actual vapor pressure, e, and saturation vapor pressure, e_s

relative humidity (in %) =
$$\frac{e}{e_s}$$
 x 100

USAGE: The phrase 'relative humidity' is commonly abbreviated RH although this is not a recognized abbreviation. Values of relative humidity are commonly expressed in units of percent relative humidity (% RH).

RECOMMENDED PRACTICES IN HUMIDITY MEASUREMENTS GENERAL PRACTICAL RECOMMENDATIONS

- Where relative humidity is of interest, a direct measurement of relative humidity is usually best. Where an absolute measure of humidity is needed, choose dew point, vapor pressure or similar measurements.
- Establish the measurement requirements at the purchasing stage in order to have the right instrument for the job.
- Allow hygrometers to equilibrate in any new environment. This is particularly necessary after changes in temperature due to transportation or storage. Depending on the instrument and on how great the change in conditions, this may require from only a few minutes to many hours.
- Follow Michell Instruments' care instructions for the instrument. Some instruments need routine cleaning or other maintenance. Before using any solvent cleaner, check with Michell Instruments that this will not harm the sensor or other materials of construction.
- Wherever possible, ensure that hygrometers are calibrated under the conditions of use, i.e. at similar values of humidity and temperature, and (if relevant) in similar conditions of pressure, airflow, etc.
- Keep a record of calibrations and any adjustments to the hygrometer. This will show the long-term stability of the instrument and allow the associated uncertainty to be assessed.
- Check instruments, if possible, at intervals between calibrations, by comparison with another (stable) instrument, to monitor for long-term drift. Routine checks are also useful before and after subjecting an instrument to transportation or other stress, which might lead to a shift in its performance. Where the check is against two (or more) instruments this is even better: not only does this add confidence, but in the event of one instrument drifting among a set of three, it can be seen which reading is most suspect.
- Cleanliness of the environment will affect different hygrometers in different ways. Dust and airborne droplets should be avoided or filtered out if possible. Contaminants can come from the most surprising sources, ordinary urban pollution, for example.

- The readings given by some types of hygrometer are sensitive to gas type. For any Instrument which reads in terms of mass per unit volume, e.g. in grams per cubic metre, it must be confirmed whether the calibration is valid for the gas in use.
- Avoid using instruments in direct sunlight or near any other source of heat, unless they are suitably shielded to prevent measurement errors.

SAMPLING IN GENERAL

- Relative humidity measurements should be carried out at a representative temperature. Failure to allow temperature equilibration will lead to a false indication of the relative humidity.
- Variations in vapor pressure from place to place can occur where an environment is subject to any addition or removal of water. If so, care must be taken over where to make a measurement in order to obtain a representative result.
- Sources and sinks of water vapor should be avoided in any sampling system. Invasion of stray water can be
 minimised by attention to leaks, hygroscopic materials, droplets and condensation. The lower the humidity,
 the more critical these precautions are.
- Hygroscopic materials should be avoided. Many materials contain moisture as part of their structure, particularly organic materials (whether natural or synthetic), salts (or anything which contains them), and anything which has small pores. Temperature changes can increase the tendency of these materials to affect the humidity of the surrounding air.
- Condensation in a sampling process can invalidate humidity measurements by reducing the water content
 of the gas being measured. What is more, condensed liquid may alter the humidity elsewhere by dripping
 or running to other locations and evaporating there. In these circumstances, measurement results may be
 misleading if hygrometer location is not considered carefully.
- Water droplets or mist must be avoided. These can result in overestimates of the humidity of the air between the droplets. Such results may exceed 100% RH, or may be impossible to interpret meaningfully. Droplets of liquid also damage some electrical types of humidity sensor. Filtering the air sample can eliminate droplets.
- If pumps are used for sampling gas, these should be located after the hygrometer, to avoid contaminating the measurement environment. Where possible, oil free pumps should be used, or filters employed. Oscillations in pressure due to pumping can sometimes be reduced or buffered using a needle valve or a reservoir of large volume.
- Special treatments such as filtration can change the amount of moisture in a gas. Some drying agents take out other gases, too
- When sealing any sensor or probe into a port or manifold in a duct or chamber, leaks through the probe or electrical cable should be considered. These are not always sealed against passage of ambient air.
- Where sampling involves a step change in temperature, pressure or gas flow rate, relative to the process being sampled, results may need to be converted or interpreted. For example 'pressure dew point' will differ from the value found after expanding the gas sample to atmospheric pressure. Care should be taken to distinguish between 'gauge' and absolute values of pressure.

DEW POINT IN GENERAL

- The measuring environment and all parts of the sampling pathway must be kept above the dew point if condensation is to be avoided. Electrical trace heating or other heating methods should be used if necessary. An excess temperature of 10°C above the dew point is usually a safe margin.
- For measurements in the region below 0°C it must be clear whether the condensate is dew or frost. Failure to distinguish between these can result in errors of about 1°C for every 10°C below zero.

RELATIVE HUMIDITY IN GENERAL

- Due care must be taken of temperature. The effect of temperature on humidity is highly significant. Failure
 to take this into account can sometimes lead to errors so large that the measurement is meaningless.
 In many situations, the largest single source of uncertainty in a humidity measurement is the effect of
 temperature differences from place to place in the process, room or chamber. The importance of considering
 the temperature effects carefully cannot be overstated when relative humidity is the parameter of interest.
- Care must be taken when expressing uncertainties, changes or fractional differences in relative humidity. For example, the difference between 50% RH and 52% RH is 2% RH. This can also be expressed as a difference of 4% of value. It is important to distinguish clearly between these two kinds of statement.

RECOMMENDATIONS SPECIFIC TO RANGES OF MEASUREMENTS

- Ambient humidity Avoid using hygrometers near the body, which is a source of heat and moisture. Do not breathe close to the measurement.
- High humidity, above the ambient range Ample lines should be maintained above the dew point of the gas being measured, to avoid condensation. Electrical trace heating is often the most practical method.
- Low humidity, and very dry gases If possible, prepare for measurements by flushing sample lines and hygrometers with dry gas, or by evacuating to low pressure. Drive off stray residual water by baking assemblies if possible (but not instruments unless designed for this!). The lower the moisture content to be measured, the more dramatically the required drying time multiplies.
- Avoid hygroscopic materials. At low humidity (anything much below a dew point of 0°C) the amounts of
 water given off by organic and porous materials can dramatically affect the value of humidity. The lower
 the level of moisture, the more significant the effects.
- Choose impermeable materials, to avoid inward diffusion of moisture through sampling tubes and enclosures.
 Steel and other metals are practically impermeable. PTFE ('Teflon') is only slightly permeable and will usually be satisfactory for dew points above -20°C, and sometimes below this level. Materials such as PVC and rubber are relatively permeable and so totally unsuitable at low humidity, and not really satisfactory in any humidity range.
- Surface finish of pipework is important for very dry gases. Even the tiny quantities of water adsorbed on the surfaces of non-hygroscopic materials can have significant effect. Polished or electropolished steel is recommended for the best results.
- Clean environments are always best for humidity measurements, but this is especially critical at very low humidity. Even fingerprints harbour water. High purity cleaning agents are recommended: Analytical Reagent (AR) quality solvents for oil-based contaminants, and purified water (distilled or de-ionised) for salts. Cleaning should be followed by thorough drying by a clean method.
- Sample tubing should be as short in length as possible. The surface area should be minimised by using the narrowest tubing that the flow conditions will permit.
- Avoid leaks. Minimising the number of connections (elbows, tees, valves, etc.) helps with this.
- Adequate flow of the gas sample should be ensured, to minimise the influence of sources of stray water in the flow path.
- 'Dead ends' should be avoided, as they cannot easily be flushed.
- Back-diffusion of moisture should be minimised, e.g. by fast flow rates of gas, long exhaust tubes after the sensor, or by valves which isolate the low-humidity region from ambient air.

PRACTICAL RECOMMENDATIONS FOR SPECIFIC TYPES OF HYGROMETER

Relative humidity capacitive sensor

- Care should be taken to avoid mechanical shock (impact) or thermal shock (sudden temperature changes). Sensors should be protected from steam or water sprays, and from direct sunlight.
- Where a sensor is at risk of exposure to dust, droplets, or the occasional knock during handling, the appropriate guard or filters for the sensor head should be used.
- Any temptation to breathe on the sensor, or to wave it over cups of tea, etc. should be resisted. Filters and saturation guarding may protect the sensor, but these actions carry a risk of damage by condensation or other contamination.
- Protective filters can slow the response time of sensors. This can be avoided by removing any filter, but the benefit must be weighed against the risk of damage to the sensor.
- Sensors should not normally be submerged in liquids. In the case of a resistive (electrolytic) sensor, water or other liquids would certainly damage the sensor beyond repair.
- Salt solutions are especially commonly used for calibration of electrical sensors, and should be provided with traceability directly or via a calibrated hygrometer. Protection of sensors from direct contact with salt or solution is most important as contamination would destroy or seriously impair the sensing element.

Appendix C

List of Worldwide Michell Instruments' Offices

Appendix C List of Worldwide Michell Instruments' Offices

Asia

Michell Asia PO Box 3149 Joondalup WA 6027 Australia

Tel: +61 893 046587 E-mail: au.info@michell.com Web: www.michell.com/au

China

Michell Instruments (Shanghai) Ltd Room 505, Qilai Building

889 Yishan Road Shanghai, 200233 P R China

Tel: +86 21 5401 2255
Fax: +86 21 5401 2085
E-mail: cn.info@michell.com
Web: www.michell.com/cn

Germany, Austria, Switzerland

Michell Instruments GmbH Industriestrasse 27 D-61381 Friedrichsdorf

Germany

Tel: +49 6172 591700 Fax: +49 6172 591799 E-mail: de.info@michell.com Web: www.michell.com/de

Japan

Michell Japan KK Musashino Center Building 1-19-18 Nakacho, Musashino Tokyo 180-0006

Japan

Tel: +81 422 502600 Fax: +81 422 521700

E-mail: info@michell-japan.co.jp Web: www.michell-japan.co.jp

North America

Michell Instruments Inc 319 Newburyport Turnpike, Suite 207 Rowley, MA 01969

USA

Tel: +01 978 484 0005 Fax: +01 978 843 7669 E-mail: us.info@michell.com Web: www.michell.com/us **Benelux**

Michell Instruments Benelux BV

Krombraak 11 4906 CR Oosterhout The Netherlands

Tel: +31 162 680 471
Fax: +31 162 437 566
E-mail: nl.info@michell.com
Web: www.michell.com/nl

France

Michell Instruments SAS 2-4, rue Jean Desparmet

69008 Lyon France

Tel: +33 437 53 88 20 Fax: +33 437 53 88 21 E-mail: fr.info@michell.com Web: www.michell.com/fr

Italy

Michell Italia Srl Via Capecelatro, 10 20148 Milano

Italy

Tel: +39 02 4047194 Fax: +39 02 40010565 E-mail: it.info@michell.com Web: www.michell.com/it

Middle East

Michell Instruments Middle East

P-06, #097

Sharjah Airport Int'l free zone

Sharjah,

United Arab Emirates
Tel: +971 6 5575028
Fax: +971 6 5575029
E-mail: me.info@michell.com

United Kingdom

Michell Instruments Ltd

48 Lancaster Way Business Park

Ely, CB6 3NW Cambridgeshire

England

Tel: +44 1353 658000 Fax: +44 1353 658199 E-mail: info@michell.com Web: www.michell.com/uk

NOTES

NOTES

http://www.michell.com